If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-3y-5=0
a = 6; b = -3; c = -5;
Δ = b2-4ac
Δ = -32-4·6·(-5)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{129}}{2*6}=\frac{3-\sqrt{129}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{129}}{2*6}=\frac{3+\sqrt{129}}{12} $
| 8c=80;c= | | -6-7y=22 | | x^2-6x+25=0.01 | | 6^3x+4=5 | | H=-16t^2+12t+1100 | | 90+(3x+26)+(2x+29)=180 | | h/9-3=29 | | 26x=x+4 | | 31x^2-150^2=0 | | -230.4=k(1024) | | -2=-3+11x | | (x+9)+(7x-5)+(3x)=180 | | 55=7p-8 | | s×7=77 | | 15(4+6x)=120x-24 | | 3x-119=6x-14 | | 5x+9=3x+22 | | 2x+(2x+2)-80=0 | | 90+(4x-5)+(2x+29)=180 | | 2x+(2x+2)=80 | | 2x-16=4x+11 | | (6x-8)+(5x-4)+x=180 | | 5n+5=26-2n | | 120-x=0 | | 13x-4=6- | | 6t+3=33 | | 72+6x=120-10x | | -m^2+6m=-112 | | 2(5)-3y=12 | | n/2+2=40 | | 102=4x-6 | | 20=48+5y |